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Mass transport around a horizontal cylinder 
beneath waves 

By JOHN R. CHAPLIN 
Department of Civil Engineering, University of Liverpool 

(Received 11  August 1983) 

Around a horizontal cylinder submerged beneath waves with its axis parallel to the 
wave crests there exists, owing to streaming flow in the boundary layer, circulation 
with the same sense of rotation as that of the orbital motion in the waves. 
Experimental results, for conditions in which the effects of separation are not 
important, confirm theoretical predictions of the mass-transport velocity at  the outer 
edge of the oscillatory boundary layer. Pressure measurements on the cylinder reveal 
a nonlinear component which is interpreted as a consequence of circulation induced 
by steady streaming. 

1. Introduction 
A striking feature of non-uniform oscillatory flow over a solid surface is the steady 

‘streaming’ that is generated within the boundary layer, but which may extend 
beyond into the external flow. Being responsible for steady currents in otherwise 
oscillatory conditions, the streaming flow has been considered mainly in terms of its 
effects on the kinematics of fluid particles. For example, Schlichting (1932) studied 
the steady flow patterns around a cylinder oscillating at right-angles to its axis in 
otherwise-stationary fluid. The boundary layer in this case is of the standing-wave 
type, in which the oscillations are everywhere in phase. In connection with mass 
transport near the sea bed beneath waves, Longuet-Higgins (1953) analysed both 
standing and progressive oscillatory boundary layers. In both cases the velocity 
distribution of the steady flow across the thickness of the boundary layer is 
independent of the viscosity, and towards the outer limit of the boundary layer i t  
attains a finite value, which, at  least to leading order, is a function only of the local 
characteristics of the external oscillatory flow. In some contexts (Longuet-Higgins 
1960) the width of the steady current in the external flow spreads with time and 
would ultimately, in the absence of other boundaries, extend to infinity. In  other 
circumstances (Riley 1965; Stuart 1966) the steady current falls to zero across an 
outer boundary layer whose thickness is finite, but much greater than that of the 
oscillatory boundary layer. 

In work more relevant to the present case, Longuet-Higgins (1970) and Riley (1971) 
studied the outer flow around a cylinder moving along a circular path without 
rotation in fluid at  rest at  infinity. They showed that the oscillatory boundary layer 
merges into a potential vortex, so that the steady current becomes inversely 
proportional to the radial distance. Subsequently Riley (1978) considered the case 
of a cylinder of elliptic cross-section executing the same motion. Owing to the 
non-uniformity of the streaming flow around the cylinder in this case, it cannot match 
directly the potential vortex and the necessary transition is provided by an outer 
boundary layer. 
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The purpose of this paper is to consider a related case, namely that of the flow 
around a horizontal cylinder submerged beneath waves of small amplitude with its 
axis parallel to the wave crests. The characteristics of the oscillatory boundary layer 
in this example are predominantly those of the progressive type, since the velocity 
distribution around the cylinder advances one circumference in every wave period. 
However, the non-uniformity of the ambient flow causes the speed of the steady 
current a t  the outer edge of the oscillatory boundary layer to  be a function of the 
angular position around the cylinder, with maximum and minimum values respectively 
at the top and bottom of the cross-section. Although it  is from a differcnt source, 
the non-uniformity of the streaming flow resembles that around an elliptic cylinder 
in uniform circular orbital flow (Riley 1978). 

The work described in this paper was originally stimulated by consideration of the 
characteristics of wave loading on components of maritime structures. To within the 
usual boundary-layer approximation, there can be no change in pressure across the 
inner (oscillatory) boundary layer. But modifications to the irrotational flow produced 
by steady streaming, and the greater thickness of the outer boundary layer (when 
there is one) give rise to the possibility that thc pressure at the cylinder’s surface 
differs significantly from that of the ideal fluid flow solution. 

In  $ 2  we determine the steady flow to be expected at the outer limit of the 
oscillatory boundary layer using Bat<chelor’s (1967) general result for non-uniform 
oscillatory flows. Measurements of particle motion around the cylinder presented in 
53 are in good agreement with these predictions, in terms both of instantaneous 
particle position and mean drift velocity. I n  §4 we investigate experimentally the 
concept that the effects of streaming flow can influence pressure a t  the surface of the 
cylinder. Measurements suggest that  there is a systematic departure in pressure from 
the ideal fluid-flow result,, distinct from the effects of separation. 

2. Streaming flow in the oscillatory boundary layer 
In  a previous paper (Chaplin 1981) the author investigated characteristics of the 

irrotational flow around a horizontal cylinder submerged beneath gravity waves with 
its axis parallel to the wave crests. This problem was studied in a more general form 
by Dean (1948), Ursell(l950) and Ogilvie (1963), who concerned themselves with the 
effects on small-amplitude waves of a cylinder that  is completely submerged, but close 
to the free surface. Ogilvie formulated the velocity potential in terms of the solutions 
of an infinite set of linear simultaneous equations, and derived expressions for the 
first-order force and the time-independent component of the second-order force on 
the cylinder. For a more deeply submerged cylinder the effects of the disturbances 
on the incident waves are diminished and, as Ogilvie noted, the flow around the 
cylinder ultimately can be approximated by means of Milne-Thomson’s (1  968) circle 
theorem. Chaplin (1981) showed that, providing the relative submergence - Y, / c  (see 
figure 1) is greater than about 5, the circle theorem yields a good approximation for 
the irrotational flow around the cylinder and the associated forces on it. The present 
paper is concerned with cases in which this condition is met, and we adopt t\e circle 
theorem to  provide a description of the irrotational flow around the cylinder. 

For incident waves of small amplitude a ,  period 2 n / w ,  wavelength 2n/K in water 
of constant depth d ,  the complex potential is 

WU 
sin(KZ+iKd-wwt), * = K sinh Kd 
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x = x o  

Y = - d  
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where Z = X+ i Y.  At a point on the circle Z = Z,  + c eis, the radial and tangential 
components of velocity due to the incident waves alone are given by 

wa 
sinh Kd v,- lvg = - cos (KZ, + Kc eis + i Kd - wt ) eie . 

Using a corollary of the circle theorem, namely that the introduction of the cylinder 
in the flow causes the radial and tangential velocity components over its surface to 
be respectively cancelled and doubled, the irrotational flow velocity over the surface 
of the cylinder may be shown to be equal to the real part of UeiWt, where 

ePiKcsinkz cos [kx+iKX], 2wa u=- 
sinh Kd (2.3) 

in which the velocity is considered positive-clockwise, i.e. having the same direction 
a t  the top of the cylinder as that of the wavetrain; x is measured around the cylinder 
from its uppermost point in the same sense, k = l / c  and X = Yo +d + c  cos Ex. In  (2.3) 
the arbitrary phase angle K X ,  has been put to  zero. 

Similarly, the pressure component a t  frequency w at the cylinder's surface derived 
from the irrotational flow is given by 

a %=- [2 cosh (KX, + Kc cos kx) e-iKcsin - cosh KX,] eiwt, (2.4) pg coshKd 
where the real part of any complex quantity is to be understood. 

The boundary layer over the surface of the cylinder has periodic progressive 
characteristics, and must be expected to give rise to a clockwise-streaming flow. Since 
the magnitude of the velocity fluctuation over the surface of the cylinder is a function 
of x, the streaming flow must also vary around the circumference. The degree of this 
non-uniformity reflects that of the incident flow over the diameter of the cylinder, 
and is therefore determined partly by the value of Kc. 

Adopting (2.3) as a description of the external flow over the stationary surface 
of the cylinder, we proceed to evaluate the streaming flow, neglecting the effects of 
separation. This will restrict the application of results to  small values of the 
Keulegan-Carpenter numbers K, and K, defined as 
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where 
aw sinh K( & + d) 

sinh Kd (2.6) 
aw cosh K(  Yo + d )  

sinh Kd uo = > v,= 
are the magnitudes of the horizontal and vertical components of velocity in the 
undisturbed flow a t  the location of the centre of the cylinder (K, 

For the streaming flow just outside a periodic boundary layer with both progressive 
and standing components, Batchelor (1967, p. 360) derives the formula 

Ky). 

where an asterisk denotes the complex conjugate. g .  is the steady Eulerian velocity 
arising from the non-zero Reynolds stresses within the boundary layer. The second 
part of the right-hand side of (2.7) arises from the uniform progressive component 
of the external velocity profile, i.e. that  which can be expressed as A ei(wt-kx), where 
A is a constant. The resulting component of the streaming flow is that  appropriate 
for example in the context of the bed boundary layer beneath uniform progressive 
gravity waves. The effect of non-uniformity in the progressive pattern of the velocity 
distribution (i.e. when A is a function of x) arises through the first part of (2.7). The 
streaming-flow velocity profiles through the thickness of the oscillatory boundary 
layer are given by Longuet-Higgins (1953) for the progressive and standing com- 
ponents. In  the case of the horizontal cylinder beneath waves, both are present, as 
(2.3) demonstrates. It can be shown that for the general case the streaming-flow 
velocity profile fi2 (y) is given by 

-2ee-PY(2cos~y-sinpy)+3] 1 , (2.8) 

where p = (w/2v)k It is easily seen that, as By;. 00, Uz+ 0, (equation 2.7). 
Just  outside the oscillatory boundary layer, the total particle-drift velocity, 

comprising IT2 and the 'Stokes drift', is given by (Batchelor, 1967, equation 5.13.22) 

With U defined in (2.3), the streaming-flow velocity around the cylinder is 

3wa2 
2c sinh2 Kd u2 = {sinh 2KS + sin 2kx 

+Kc(sin kxsinh2KS+cos kxcosh2KS+cos3kx)], (2.10) 

and the total Lagrangian drift velocity is 

oa2 
c sinh2 Kd % =  v,+ {sinh 2KS+ Kc(cos kx cosh 2KS+ cos 3kx)}. (2.11) 
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FIGURE 2. Distribution of streaming-flow velocity around the cylinder 
for KS, = 2 and various values of Kc. 

The distribution of u2 around the cylinder is shown in figure 2. It bears a strong 
resemblance to  the distribution of steady streaming calculated by Riley (1978, 
figure 2) for a cylinder of elliptic cross-section. For small Kc 

3wa2 
2c sinh2 Kd n2 M (sinh 2KS, + sin 2kx)  

3 
= -[(UE- Vt)sinkxcoskz+U,, 51. 

CW 
(2.12) 

The expression on the right-hand side of (2.12) is identical with the results for g2 
in the case of a cylinder located in uniform elliptical orbital flow with undisturbed 
velocity components ( U ,  cos wt, - V, sin wt). The cases U ,  = V, and V, = 0 then refer 
respectively to the flow around a cylinder forced to move in a fluid at rest a t  infinity 
along a circular path (Riley 1971), and around a cylinder oscillating along a straight 
line perpendicular to its axis (Schlichting 1932). They are moreover equivalent to  two 
special cases of the general uniform flows studied by Longuet-Higgins (1970). The 
different characteristics of the uniform and non-uniform flows are illustrated in figure 
3, which compares particle paths in uniform and wave-induced flows computed by 
time-stepping the appropriate irrotational-flow solutions. 

Just  outside the oscillatory boundary layer, the tangential velocity has an 
unsteady part U (equation 2.3) superimposed on the steady current n2 (equation 
2.10). When o2 exceeds the magnitude of U ,  there can be no flow reversal. For small 
Kc this condition arises a t  all points around the cylinder when 

2c sinh Kd 
3 sinh KS,, a >  approximately, (2.13) 

or 
2n 
3 

K ,  > - approximately. (2.14) 



180 J .  R. Chaplin 

FIGURE 3. Particle trajectories computed from ideal fluid flow analysis: (a )  for a cylinder in 
conditions identical to those used in the experiments, with period 1.14 s, amplitude 25 mm; ( b )  for 
a cylinder in uniform ambient flow with the same undisturbed velocity a t  the location of the 
cylinder. 

However, for conditions in which this might be expected to  occur, the effects of 
separation may disrupt the assumed flow pattern around the cylinder. 

3. Measurements of mean drift velocities 
The purpose of the experiments described here was to measure the d;ift current 

around the circumference of a horizontal cylinder beneath waves. Measurements were 
made in regular waves in the 14 m long flume of the Department of Civil Engineering 
at the University of Liverpool. The width of this flume is 760mm, and the 
experiments were carried out with a rigid perspex cylinder of diameter 76 mm 
spanning the flume a t  an elevation of 650mm above the bed. The mean water 
depth throughout was 850 mm. 

The same cylinder was used to provide measurements of pressure in experiments 
described in 94. It was provided with two pressure tappings at diametrically opposite 
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FIGURE 4. Tongues of dye advancing around the cylinder. Also apparent is an indication of the 
nature of the outer mean flow shown by the dye which has penetrated beyond the oscillatory 
boundary layer. 

points on the central cross-section, and when mounted in the flume could be rotated 
about its axis to bring the pressure tappings to any desired orientation. The tappings 
were made from 1 mm stainless-steel tubing, finished flush with the external surface 
of the cylinder, connecting on the inside with 1 mm internal diameter silicone rubber 
pipes. Besides being used as pressure tappings, the holes in the cylinder wall, together 
with the connecting piping, offered a convenient way of introducing dye into and 
beyond the boundary layer. By means of a small syringe, potassium permanganate 
solution was forced along one of the pipelines to emerge on the cylinder’s surface, 
then to  be swept around the circumference of the cylinder under the action of the 
Stokes drift and the streaming flow. A piece of graph paper lacquered to  the cylinder’s 
surface provided a scale on which the forward movement of the front face of a tongue 
of dye could be measured. A video recorder with a single-frame advance facility on 
playback was used to digitize the movement of the dye around the cylinder, a t  a 
sampling frequency of 25 Hz. The video records (from which figure 4 is taken) show 
clearly the front face of the dye. Frame-by-frame analysis revealed quantitatively 
the steady circulation around the cylinder superimposed on the oscillatory component 
a t  the wave frequency. 

This method of studying the flow was not suitable for all cases, since in steeper 
waves the forward velocity of the front face of the dye was sufficient to take it,  in 
only one or two wave periods, more than half the way around the cylinder, and 
therefore out of the view of the camera. I n  these circumstances i t  was not easy to 
measure reliably the advance of the dye from one wave to the next, and an alternative 
method was used to find the mean drift velocity. Instead of dye, a saline solution 
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FIGURE 5.  Output of salinity meters on the surface of the cylinder showing the 
time delay corresponding to the mean drift velocity. 

was injected into the boundary layer, and its forward progress around the cylinder 
was detected by means of two pairs of stainless-steel wires, stuck to  the surface of 
the cylinder, lying parallel to its axis. The two wires in each pair were separated by 
about 5 mm, and the two pairs of wires were positioned 'downstream ' of the hole used 
for introducing the saline solution, by angular separations of 40' and 230' respectively. 
Changes in resistance between the wires in each pair were detected by means of 
Churchill monitors normally used for measuring the water surface elevation a t  a twin- 
wire resistance wave gauge. I n  the present application, the arrival of the saline 
solution over the wires was signalled by a sudden change in the monitor outputs, 
which were fed to an ultraviolet recorder. A typical record (figure 5 )  shows the effect 
of the steady drift component of the flow together with the oscillatory motion a t  the 
wave frequency. The mean total drift velocity between the two pairs of wires was 
computed from the time delay between the two signals, taking into consideration also 
the different wave phases a t  which they began. I n  order to minimize possible errors 
due to the density difference, the two pairs of wires were positioned symmetrically 
about the top of the cylinder. 

The streaming-flow velocity profile (2.8) has at a finite value of /3y (i.e. within the 
boundary layer) a maximum which in the present circumstances exceeds u2 by about 
14 yo. There is a similar, though smaller, percentage overshoot in the Langrangian 
velocity profile. However, we expect measurements of mean drift velocities to be 
closer to r2, since just outside the boundary layer, where the drift velocity has a 
more uniform distribution, the concentration of dye or salt is much greater than in 
the very thin layer of faster-moving fluid inside it. 

Figure 6 shows measurements from video recordings of the position of the dye front 
as a function of time in waves of height 10 mm and period 1.14 s. Also shown for each 
case is the motion of a particle computed by a time-stepping integration of the 
oscillatory velocity (equation 2 .3 ) ,  superimposed on the streaming flow (equation 
2.10). The agreement, both in terms of the instantaneous and mean motions, is very 
good. Also shown for reference is the computed mean drift of a particle under the 
action alone of the streaming flow (equation 2.10), and also under the total mean drift 
velocity (equation 2.11). 
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FIGURE 6. Observed and computed particle trajectories around the cylinder beneath waves of period 
1.14 s ,  amplitude 5 mm. Mean particle trajectories derived from (2.11) for the total drift velocity 
and from (2.10) for the streaming flow alone. 

For steeper waves the total mean drift was measured using the salinity meters 
which provided only the average speed of a particle over an arc of the cylinder's 
circumference. The results presented below are for the arc - 1.665 < kx < 1.665, and 
each one is an average of several tests in which the saline solution was introduced 
a t  different wave phases. For waves of period 1.14 sand various heights, figure 7 shows 
the mean drift velocities measured in this way. Also shown for comparison are the 
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FIGURE 7. Mean drift velocities computed from salinity measurements in waves of period 1.14 s, 
compared with the results of (2.9) based on wave-induced and uniform ambient-flow conditions. 
_ _ _  , horizontal velocity component of the undisturbed flow. 

average drift, velocities computed for corresponding conditions from (2.9) on the 
basis either of uniform elliptical orbital-flow conditions (for which the incident-flow 
velocities were calculated from linear wave theory) or the non-uniform flow (equation 
2.11). As figure 7 shows, the non-uniformity of the flow is not a dominant factor in 
the mean velocity in these circumstances, and both theoretical lines agree well with 
the measurements. For the steepest waves used, the mean drift velocity is about twice 
the incident-flow velocity in the undisturbed waves (shown as a broken line in figure 
7) .  This indicates that  the conditions are approaching those in which there is no flow 
reversal around the cylinder. Although the average results for the steepest waves do 
not deviate far from the theoretical results, individual measurements for these cases 
become rather erratic. This was due to the increasing significance of the wave phase 
a t  which the saline solution was injected, the difficulty of extracting the mean drift 
velocity when the time interval between the responses of the salinity meters was less 
than one wave period, and the increasing effects of separation, observed by means 
of dye mixed with the saline solution. It is therefore possible that for the steepest 
waves represented in figure 7 ,  i.e. those with K ,  > 1 ,  the observed migration of the 
saline solution a t  some wave phases was influenced by the fact that  i t  found its way 
into the wake, which progresses around the cylinder once in every wave period. 

4. Measurements of pressure on the cylinder 
Pressure measurements on the surface of the cylinder were carried out to test 

whether a departure from ideal fluid flow results, possibly attributable to the 
streaming flow, could be identified. For pressure measurements the cylinder was 
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FIGURE 8. Measured deviations in pressure amplitudes from the linear relationship equation (2.4) 
for waves of various amplitudes, period 1.53 s: 0,  kz = 0; x , kx = x .  

mounted as described in $3, and the two pressure tappings were connected to Druck 
PDCR45 pressure transducers. These were mounted on the inside wall of the flume, 
just above the highest crest level, in order to minimize the pipe length to the surface 
tappings, about 60 ern in all. Tests carried out with pipes of length 60 and 120 cm 
produced indistinguishable results, suggesting that the pressure fluctuations did not 
suffer serious attenuation due to pipeline losses. The output signals from the pressure 
transducers and wave gauges were logged a t  100 Hz and stored on disk. Results 
presented below are derived from the components of pressure and surface elevation 
records a t  the fundamental wave frequency, extracted by Fourier analysis. In  all the 
tests the cylinder was orientated so that the pressure tappings were exactly a t  the 
top and bottom of the cylinder (i.e. a t  kx = 0 and n). 

Not surprisingly the amplitude of pressure fluctuations p ,  was proportional to  the 
wave amplitude a when a was small. Since we are mainly concerned with deviations 
in the pressure from this linear relationship, first the pressure response factors 
R = p,/pga for the top and bottom of the cylinder were calculated from pressure 
measurements in small waves. They were found to be in satisfactory agreement with 
the results of (2.4), based on the measured wave height. For steeper waves, however, 
the amplitudes of the pressure fluctuations a t  the top and bottom of the cylinder were 
respectively initially less and greater than those based on linear theory. Deviations 
from the linear relationship are shown in figure 8, in which, from experimental results, 
pJpg - Ra is plotted as a function of a for waves of period 1.53 s. The source of some 
scatter in these results lies in the process of resolving small pressure differences, about 
1 mm H,O, from the total fluctuating pressure, which was about 25 mm H,O for 
waves of 35 mm amplitude ; with proportionately worse signal-to-noise ratios a t  
smaller wave amplitudes. 
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FIGURE 9. Measured deviations in pressure amplitudes at kx = 0 from the linear relationship (2.4), 

for waves of period 1.53 s. -, best-fit line for measurement with a < 35 mm. 

For wave amplitudes greater than about 40 mm (K,  > 2.6), the large deviations 
in pressure differences from the trends are indicative of boundary-layer separation 
from the cylinder. This was also apparent in velocity measurements, which for similar 
conditions showed evidence of a separated wake close to  the cylinder. I n  figure 9 
deviations in pressure amplitudes from the linear relationship are plotted against 
wave amplitude €or the top of the cylinder’s cross-section. The least-squares fit to 
the results for a < 35 mm has a slope of 2.97, indicating that the deviation in pressure 
follows closely the cube of the wave amplitude, up to the point where separation 
profoundly modifies the flow, introducing more dramatic changes in pressure. 

Besides effects of the streaming flow and separation, nonlinear contributions to the 
pressure at the cylinder are to be expected from the nonlinearity of the free surface 
boundary condition. Ogilvie’s (1963) analysis does not extend to  the third order, but 
i t  is worth noting that use of the Stokes-series expansion for the description of the 
incident waves yields for the first nonlinear contribution to the pressure difference 
across the vertical diameter of the cylinder, at the wave frequency, 

Ap = - K2a3[(5 cosh4 Kd + cosh2 Kd + 3) sinh KS, sinh Kc + 3 sinh 3KS, sinh 3Kc] 
PS 
- 

2 sinh4 Kd cosh Kd 

This amounts to  less than 1 yo of the nonlinear pressure difference measured in the 
experiments. 
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5. Conclusions 
Measurements have been made of the mass transport around a horizontal cylinder 

submerged beneath waves, with its axis parallel to wave crests. For conditions in 
which the wave amplitude (or the Keulegan-Carpenter number) is sufficiently small 
for the effects of separation to be unimportant, and with the cylinder submerged at  
an elevation about 2.5 diameters below mean water level, the results are in good 
agreement with predictions. The theoretical analysis was based on the assumptions 
that the waves were of small amplitude and, a t  the free surface, were unaffected by 
the presence of the cylinder. 

Pressure measurements on the cylinder can be interpreted as suggesting that 
modifications to the irrotational flow field, or the existence of an outer boundary layer 
produced by the streaming flow around the cylinder, make a nonlinear contribution 
to the force it experiences. Nonlinear pressures observed in the present experiments 
point to a significant reduction in the inertia force derived from inviscid irrotational 
flow theory. However, further interpretation of these results must await theoretical 
developments following on the work of Ogilvie (1963), on nonlinearities a t  the free 
surface, and of Riley (1978), on the outer flow associated with the circulation 
generated by the streaming velocity. 

The author is indebted to N. Riley for helpful discussion on the work described in 
this paper, which was supported by the Science and Engineering Research Council 
Marine Technology Directorate through the North Western Universities Consortium 
for Marine Technology. The experiments were carried out with the assistance of 
Kostas Anastasiou. 
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